Validation functions
assert_not_blurry
assert_not_blurry(input_val)
Determines whether the input image is not blurry.
In order to use this function, make sure to enable this flag in the Process Files step by setting "detect_blurry_files" to true in the OCR Config box.
Args:
input_val (dict): Any IBOCR Record dictionary.
Returns:
True if validation is successful. Otherwise, throws an Exception and report blur factor.
assert_not_empty
assert_not_empty(input_val)
Determines whether the input value exists.
If the input is a string, will validate if the string has a length > 0.
Args:
input_val (Any): Any input.
Returns:
True if validation is successful. Otherwise, throws an Exception.
Examples:
assert_not_empty('') -> False
assert_true
assert_true(input_val)
Determines whether the input value is true.
Args:
input_val (Any): Any input.
Returns:
True if validation is successful. Otherwise, throws an Exception.
Examples:
assert_true(10 == 15) -> False
cast
cast(val, casted_type)
Casts a value to a specific type.
Casting is needed for validation, as every field must return a specific
type to be re-run. For example, IF() can return any type, therefore,
one must cast the output to the desired type.
Args:
val (Any): Any input.
casted_type (str): An allowed type for casting.
Returns:
The value passed into it, but adjusts the registered return type
used for validation.
Examples:
cast(INPUT_COL, 'string') -> INPUT_COL
validate
validate(validation_formulas)
Provide rules to validate a given field.
Args:
validation_formulas (list[str]): A list of strings (with quotes). Each string is a formula containing a validator.
Returns:
A dictionary represented as a JSON string. Will have a "status" field, which is set to "OK" if validation was
successful, else "ERROR". If status "ERROR", it will have a "msgs" field too, a list of each error message string.
Examples:
validate(['assert_not_empty(INPUT_COL)']) -> '{"status":"OK"}'